
Introduction to programming
Linear systems of equations

Non linear equations and systems

Simulation in Materials Engineering
BLOCK 2: Fundamentals of numerical analysis

J. Segurado

Departamento de Ciencia de Materiales
Polytechnic University of Madrid

October 5, 2011

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Outline

1 Introduction to programming

2 Linear systems of equations

3 Non linear equations and systems
Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Outline

1 Introduction to programming

2 Linear systems of equations

3 Non linear equations and systems
Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Introduction
A linear operator or function L(x), is a function that fulfills two
conditions

1 additivity L(x + y) = L(x) + L(y)
2 homogenety L(αx) = αL(x)

and a linear algebraical equation is a equation L(x) = b.
If an operator or function F(x) does not fulfill (1) and (2), then the
resulting equation (or system of equations)

F(x) = b

is a non linear equation
Mathematical examples are

x = tan(x)→ x − tan(x) = 0→ F (x) = x − tan(x) = 0{
x2 + y2 = 2
x + y = 0 → F(x , y) =

[
x2 + y2

x + y

]
Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Introduction

Non-linear equations and systems appear very often in physics and
Engineering because real systems have in general non-linear
response. Some physical examples can be

The Van der Waals state equation is a non-linear equation
relating p,V ,T ,

[p + a(n/V)2](V − nb) = nRT

An elasto-viscoplastic material (or any other non-linear
response) has a non-linear response, and the discretization of its
behavior leads to non-linear algebraical equations as{

∆σ = E∆t(ε̇− ε̇vp)

ε̇vp =
(
σt +∆σ
σy

)n

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Introduction

The solution of non-linear equations or systems of equations in
general cannot be accomplished by a finite number of operations.
In addition, solutions are also in general not unique: i.e. the zeros
of a 3er order polynomial function can have 3 different solutions
Iterative methods are normally adopted: a sequence of vector
x(k) is searched that will converge to a solution x of the system
Two methods will be covered within this course: bisection and
Newton-Raphson

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Outline

1 Introduction to programming

2 Linear systems of equations

3 Non linear equations and systems
Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Bisection method
Let f be a continuous function in [a,b] / f (a)f (b) < 0 . Then f has at
least one zero α in (a,b), f (α) = 0
The bisection method iteratively halves the actual interval Ik , and from
the two halves defines the new interval Ik+1 as the interval where f
still satisfies f (a)f (b) < 0

a b

f(x)

I0

I1
I2

I3

y

x

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Bisection method

The succession of points {x (k)} defined as the mid-points of the
intervals Ik converges to the solution α, f (α) = 0.
As ‖Ik‖ = (1/2)k‖I0‖, then the error
|x (k) − α| = (1/2)‖Ik‖ = (1/2)k+1(b − a)

The number of iterations kεneeded to obtain α with an error ε is

kε ≥ int(
log[(b − a)/ε]

log 2
)

A general algorithm should have the function f (x) as input, as
well as a,b, ε

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Bisection method

A function in MATLAB/Octave can be stored in several ways. In order
to pass the function itself as a variable to other program or function it
is useful to define it as fun=inline(’1/(1+x^2)’)
The function can be plotted directly using fplot(fun,[a,b])
In order to evaluate the function for a specific value of x ,
feval(fun,x)

OCTAVE/MATLAB exercise

Define a non-linear function f (x) that has a zero and represent that
function within an interval [a,b] that includes the x where f = 0.

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Bisection method

Algorithm of bisection

function [solution,niter]=bisection(fun,a,b,epsilon)
niter=0;
if feval(fun,a)*feval(fun,b) >0

disp(’error, same sign in a and b’);
return

elseif abs(feval(fun,a))<=epsilon
disp(’The solution is a’);
solution=a;
return

elseif abs(feval(fun,b))<=epsilon
disp(’The solution is b’);
solution=b;
return

endif

if (b-a)>0
error=(b-a)/2;
interval(1)=a;
interval(2)=(a+b)/2;
interval(3)=b;

else
error=(a-b)/2;
interval(1)=b;
interval(2)=(a+b)/2;
interval(3)=a;

endif

while error>=epsilon
niter=niter+1;
for i=1:3
f(i)=feval(fun,interval(i));
if(abs(f(i))<=epsilon)
solution=interval(i);
return

endif
endfor
if f(1)*f(2)<0
interval(3)=interval(2);
interval(2)=(interval(1)+interval(2))/2;

elseif f(1)*f(3)<0
interval(1)=interval(2);
interval(2)=(interval(1)+interval(3))/2;

endif
error=(interval(3)-interval(1))/2;

endwhile
solution=interval(2);
return
end

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Bisection method

OCTAVE/MATLAB exercise

Use the non-linear function f (x) defined in previous exercise and
obtain its solution in [a,b] using the bisection algorithm, obtain
also the number of iterations needed.
Do the same with to solve the equation cos(x) = x in [.5,1.]
For P = Patm and T=273K calculate the volume of 1 mol of a Van
der Waals gas with a=0.364 Pa m6/mol2, b=4.267 10−5 m3/mol,
help use fun=inline(’(P+a/V^2)*(V-b)-R*T’,’V’) to
define V as variable and the rest as parameters. Compare with
an ideal gas.

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Outline

1 Introduction to programming

2 Linear systems of equations

3 Non linear equations and systems
Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Newton-Raphson method

In the bisection method, the sign of f at the endpoints of the
subintervals is the only information exploited
More efficiency can be obtained in the case of a differentiable
function by exploiting the values of f and its derivative

y

x
x(0)x(1) x(2)

df/dx(0)

df/dx(1)

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Newton-Raphson method
Given a point x (k), then the equation of a line passing through x (k)

and being tangent to f is obtained by

y(x) = f (x (k)) +
df
dx

∣∣∣∣
x=x (k)

(x − x (k))

The line cuts the x axis when y = 0 and that point will be taken as the
next iteration of x ,x (k+1)

y(x (k+1)) = 0 = f (x (k)) +
df
dx

∣∣∣∣
x=x (k)

(x (k+1) − x (k))

And operating the new approach corresponds to

x (k+1) = x (k) − 1
df
dx

∣∣
x=x (k)

f (x (k))

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Newton-Raphson method

The method finds a zero of f starting from x (0).
In general does not converge for anyx (0), but only for values
sufficiently close to α.!! A good predictor is needed!!
If converges, the method is much faster than bisection. Let f be
derivable up to 2nd order, it can be prooved that

lim
k→∞

x (k+1) − α
(x (k) − α)2 =

f ′′(α)

2f ′(α)
= cte

This mean that the method has quadratic convergency, the error
at step k + 1 is the square of the error in k multiolied by a
constant
The best error estimator is |x (k+1) − x (k)|, so iterations can stop
when |x (k+1) − x (k)| ≤ ε, being ε the desired precision

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Newton-Raphson

OCTAVE/MATLAB exercise

Complete the function to define a Newton-Raphson algorithm
function [solution,niter]=newton_raphson(fun,dfun,x0,epsilon)
error=10*epsilon;
x=x0;
niter=0;
while (error>epsilon)
niter=niter+1
value=feval(fun,x);
deriv=feval(dfun,x);
!! here define new x, error and new x0

endwhile
solution=x;
return
end

Include an exit in case the number of iterations is bigger than 100

Use the algorithm to obtain the zeros of the functions defined previously.
Compare the number of iterations needed

Solve the problem of Van der Waals with Newton and T =273K and
T=10K and compare the solution and efficiency of both algorithms

Check if the problem achieves quadratic convergency

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Outline

1 Introduction to programming

2 Linear systems of equations

3 Non linear equations and systems
Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations
Lets consider a system of n non-linear equations of the form

f1(x1, x2, · · · , xn) = 0
f2(x1, x2, · · · , xn) = 0

...
fn(x1, x2, · · · , xn) = 0

where the functions fi are non linear functions depending on variables
x1, · · · , xn. The system can be written in vectorial form by setting
f = (f1, f2, · · · fn)T and x = (x1, x2, · · · , xn)T ,

f(x) = 0

As example{
f1(x1, x2) = x2

1 + x2
2 − 1 = 0

f2(x1, x2) = sin2(x1) + cos2(x2)− 1 = 0

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

The Newton- Raphson method adapted to systems can be used
to solve f(x) = 0
Let Jf be the Jacobian matrix of the system

Jf =

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
...

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

 ,
it plays the same role as df

dx in a scalar non-linear equation.
Given an initial x(0), the Newton-Raphson iteration k + 1 is
defined as

find δx such Jf(x(k))δx = −f(x(k))

x(k+1) = x(k) + δx

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

To obtain a new prediction for the solution x(k+1), a linear system
of equations have to be solved:

Jf(x(k))δx = −f(x(k))

, where the matrix Jf(x(k)) is the coefficient matrix (A), the
unknown vector is δx, and the independent term b corresponds
to −f(x(k))

The non-linear system will have a solution provided that Jacobian
is non-singular, det(Jf(x(k))) 6= 0 for every k . In this case LU
decomposition with pivoting can be used as a general method to
solve the linear system.

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

A vectorial/matricial function in MATLAB/OCTAVE cannot be
defined using inline definition.
A vectorial function must be defined as a MATLAB/OCTAVE
object name.m. Example, to define the function in the last
example
function F=funvect(x)
F(1,1)=x(1)^2+x(2)^2-1;
F(2,1)=sin(x(1))^2+cos(x(2))^2-1;
return
end

In the case of a function defined as name.m, it can be passed as
an input of other function by using @ before the name. Example
to pass the function to a MATLAB/OCTAVE object minimum that
obtains the minimal one should write
>>>zmin=minimum(@funvect,par1,par2,..,parn)

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

OCTAVE/MATLAB exercise
Obtain the Jacobian matrix of the example
Define two MATLAB/OCTAVE functions defining the function and
the Jacobian matrix
Create a matlab object called evaluate.m that uses a vectorial
function (n=2) as input and writes as output the value of the
function for x1 = π/4 and x2 = [−1 : 1]. An additional input
should be the number of points to be evaluated
Run evaluate.m on the function of the example and then
represent y = f(π/4, x)

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

The Newton-Raphson algorithm in the case of a system of
equations is almost the same than for scalar equations.
function [solution,niter]=
newton_raphson_system(fun,dfun,x0,epsilon)
error=10*epsilon;
x=x0;
niter=0;
while
(error>epsilon)&(niter<100)
niter=niter+1
value=feval(fun,x);
deriv=feval(dfun,x);
x=x0-deriv\value;
error=norm(x-x0)
x0=x
endwhile

if(niter<100)
solution=x;
else
disp(’error’)
endif
return
end

A linear system that has to be solved at each iteration. Here is
done by the built-in command to solve a linear system: A\b.
The method stops when the norm of the diference between
consecutive predictions reaches the desired tolerance ε,

‖x(k+1) − x(k)‖ ≤ ε

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

OCTAVE/MATLAB exercise
Write the Newton-Raphson algorithm for systems of equations
Solve the example{

f1(x1, x2) = x2
1 + x2

2 − 1 = 0
f2(x1, x2) = sin2(x1) + cos2(x2)− 1 = 0

for a given initial value of x(0) = [1,1]

Solve the same system for an initial value of x(0) = [1,0]. What
happens?
Correct the code in order to give a message and stop the
procedure when a problem like the one before appears

Author, Another

Introduction to programming
Linear systems of equations

Non linear equations and systems

Introduction
Bisection method
Newton-Raphson method
Systems of non-linear equations

Systems of non-linear equations

As usual, MATLAB/OCTAVE provides built-in procedure to find the
roots of a non-linear equation or system of equations, in its easiest
form the the procedure is called by fsolve(fun,x0) and provides a
numerical solution of the problem , if converge!

OCTAVE/MATLAB exercise
Solve the problem of Van der Waals using command fsolve

Author, Another

	Introduction to programming
	Linear systems of equations
	Non linear equations and systems
	Introduction
	Bisection method
	Newton-Raphson method
	Systems of non-linear equations

